首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1624篇
  免费   215篇
  2021年   19篇
  2020年   17篇
  2019年   14篇
  2018年   20篇
  2017年   19篇
  2016年   34篇
  2015年   40篇
  2014年   60篇
  2013年   63篇
  2012年   96篇
  2011年   101篇
  2010年   59篇
  2009年   53篇
  2008年   80篇
  2007年   64篇
  2006年   73篇
  2005年   45篇
  2004年   58篇
  2003年   55篇
  2002年   61篇
  2001年   58篇
  2000年   53篇
  1999年   49篇
  1998年   18篇
  1997年   28篇
  1996年   12篇
  1995年   28篇
  1994年   17篇
  1993年   19篇
  1992年   39篇
  1991年   28篇
  1990年   45篇
  1989年   42篇
  1988年   40篇
  1987年   36篇
  1986年   17篇
  1985年   19篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1980年   15篇
  1979年   13篇
  1978年   22篇
  1976年   9篇
  1975年   9篇
  1974年   9篇
  1973年   14篇
  1972年   13篇
  1971年   15篇
  1968年   11篇
排序方式: 共有1839条查询结果,搜索用时 31 毫秒
111.
Many serotype 3 reoviruses bind to two different host cell molecules, sialic acid and an unidentified protein, using discrete receptor-binding domains in viral attachment protein, final sigma1. To determine mechanisms by which these receptor-binding events cooperate to mediate cell attachment, we generated isogenic reovirus strains that differ in the capacity to bind sialic acid. Strain SA+, but not SA-, bound specifically to sialic acid on a biosensor chip with nanomolar avidity. SA+ displayed 5-fold higher avidity for HeLa cells when compared with SA-, although both strains recognized the same proteinaceous receptor. Increased avidity of SA+ binding was mediated by increased k(on). Neuraminidase treatment to remove cell-surface sialic acid decreased the k(on) of SA+ to that of SA-. Increased k(on) of SA+ enhanced an infectious attachment process, since SA+ was 50-100-fold more efficient than SA- at infecting HeLa cells in a kinetic fluorescent focus assay. Sialic acid binding was operant early during SA+ attachment, since the capacity of soluble sialyllactose to inhibit infection decreased rapidly during the first 20 min of adsorption. These results indicate that reovirus binding to sialic acid enhances virus infection through adhesion of virus to the cell surface where access to a proteinaceous receptor is thermodynamically favored.  相似文献   
112.
Metallointercalator-DNA conjugates were prepared by amide bond formation between active esters on the nonintercalating ligands of transition metal complexes and primary amines presented at the 5' or the 3' termini of oligonucleotides attached to solid supports. The conjugates were liberated from the support by aminolysis and purified by HPLC on C18 or C4 stationary phases, which separates the two diastereomeric forms of the conjugates containing either the Lambda or the Delta enantiomer of the octahedral metal complex. The coupling reaction proceeds with approximately 75% conversion of the amino-terminated oligonucleotide into the conjugate; the isolated yield is approximately 200 nmol for syntheses initiated on DNA-synthesis columns with a loading of 2 micromol. The conjugates were characterized by ultraviolet-visible and circular dichorism absorption spectroscopy, electrospray ionization mass spectrometry, enzymatic digestion, and polyacrylamide gel electrophoresis (PAGE). Oligonucleotides bearing [Rh(phi)(2)(bpy')](3+) (phi = 9, 10-phenanthrene quinone diimine; bpy' = 4-butyric acid-4'-methyl bipyridyl) form 1:1 duplexes with the complementary strand, and the electrophoretic mobility under nondenaturating PAGE of duplexes containing Delta-Rh is notably different from duplexes containing Lambda-Rh. High-resolution PAGE of DNA photocleavage reactions initiated by irradiation of the tethered Rh complexes reveal intercalation of the complex only near the tethered end of the duplex. Analogous DNA-binding properties were observed with [Rh(phi)(2)(bpy')](3+) tethered to the 3' terminus. By combining the 3' and 5' modification strategies, a mixed-metal DNA conjugate containing both [Os(phen)(bpy')(Me(2)-dppz)](2+) (Me(2)-dppz = 7, 8-dimethyldipyridophenazine) on the 3' terminus and [Rh(phi)(2)(bpy')](3+) on the 5' terminus was prepared and isolated. Taken together, these strategies for preparing metallointercalator-DNA conjugates offer a useful approach to generate chemical assemblies to probe long-range DNA-mediated charge transfer where the redox initiator is confined to and intercalated in a well-defined binding site.  相似文献   
113.
Based on chromosomal mapping data, we recently revealed an unexpected linkage of troponin genes in the human genome: the six genes encoding striated muscle troponin I and troponin T isoforms are located at three chromosomal sites, each of which carries a troponin I-troponin T gene pair. Here we have investigated the organization of these genes at the DNA level in isolated P1 and PAC genomic clones and demonstrate close physical linkage in two cases through the isolation of individual clones containing a complete troponin I-troponin T gene pair. As an initial step toward fully characterizing this pattern of linkage, we have determined the organization and complete sequence of the locus encoding cardiac troponin I and slow skeletal troponin T and thereby also provide the first determination of the structure and sequence of a slow skeletal troponin T gene. Our data show that the genes are organized head to tail and are separated by only 2.6 kb of intervening sequence. In contrast to other troponin genes, and despite their close proximity, the cardiac troponin I and slow skeletal troponin T genes show independent tissue-specific expression. Such close physical linkage has implications for the evolution of the troponin gene families, for their regulation, and for the analysis of mutations implicated in cardiomyopathy.  相似文献   
114.
115.
116.
A novel murine model of intrauterine infection/inflammation-induced preterm birth based on direct endoscopic intracervical inoculation is described. Using this model, we investigated infection-induced premature pregnancy loss in normal and interleukin (IL) 1beta-deficient mice. Seventy-four CD-1, HS, C57BL/6J wild type (IL-1beta+/+), and C57BL/6J IL-1beta-deficient (IL-1beta-/-) mice were inoculated intracervically using a micro-endoscope, at a time corresponding to 70% of average gestation. Intracervical injection of lipopolysaccharide (LPS) or Escherichia coli reliably induced premature birth: 100% of mice intracervically injected with LPS and 92% of mice with a positive endometrial E. coli culture delivered prematurely within 36 h after inoculation. No losses were observed in mice inoculated with saline. Pregnancy loss was associated with increased uterine tissue cyclooxygenase-2 gene expression and uterine content of IL-1beta, tumor necrosis factor alpha, macrophage inflammatory protein-1alpha, and IL-6, as well as elevation of nuclear factor-kappaB activity in uterine tissues. Although IL-1beta-/- mice exhibited decreased uterine cytokine production in response to bacteria and LPS, IL-1beta deficiency did not affect the rate of pregnancy loss. This model using direct intracervical bacterial or LPS inoculation is useful for studying preterm pregnancy loss in genetically altered mice in order to develop novel interventions for infection-associated preterm labor.  相似文献   
117.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. A complex of IL-11 and the IL-11 receptor (IL-11R) has been shown to interact with gp130, with high affinity, and to induce gp130- dependent signaling. In this study, we have identified residues crucial for the binding of murine IL-11 (mIL-11) to both the IL-11R and gp130 by examining the activities of mIL-11 mutants in receptor binding and cell proliferation assays. The location of these residues, as predicted from structural studies and a model of IL-11, reveals that mIL-11 has three distinct receptor binding sites. These are structurally and functionally analogous to the previously defined receptor binding sites I, II, and III of interleukin-6 (IL-6). This supports the hypothesis that IL-11 signals via the formation of a hexameric receptor complex and indicates that site III is a generic feature of cytokines that signal via association with gp130.  相似文献   
118.
Poliovirus has a single-stranded RNA genome of positive polarity that serves two essential functions at the start of the viral replication cycle in infected cells. First, it is translated to synthesize viral proteins and, second, it is copied by the viral polymerase to synthesize negative-strand RNA. We investigated these two reactions by using HeLa S10 in vitro translation-RNA replication reactions. Preinitiation RNA replication complexes were isolated from these reactions and then used to measure the sequential synthesis of negative- and positive-strand RNAs in the presence of different protein synthesis inhibitors. Puromycin was found to stimulate RNA replication overall. In contrast, RNA replication was inhibited by diphtheria toxin, cycloheximide, anisomycin, and ricin A chain. Dose-response experiments showed that precisely the same concentration of a specific drug was required to inhibit protein synthesis and to either stimulate or inhibit RNA replication. This suggested that the ability of these drugs to affect RNA replication was linked to their ability to alter the normal clearance of translating ribosomes from the input viral RNA. Consistent with this idea was the finding that the protein synthesis inhibitors had no measurable effect on positive-strand synthesis in normal RNA replication complexes. In marked contrast, negative-strand synthesis was stimulated by puromycin and was inhibited by cycloheximide. Puromycin causes polypeptide chain termination and induces the dissociation of polyribosomes from mRNA. Cycloheximide and other inhibitors of polypeptide chain elongation "freeze" ribosomes on mRNA and prevent the normal clearance of ribosomes from viral RNA templates. Therefore, it appears that the poliovirus polymerase was not able to dislodge translating ribosomes from viral RNA templates and mediate the switch from translation to negative-strand synthesis. Instead, the initiation of negative-strand synthesis appears to be coordinately regulated with the natural clearance of translating ribosomes to avoid the dilemma of ribosome-polymerase collisions.  相似文献   
119.
Developing cardiac myocytes divide a limited number of times before they stop and terminally differentiate, but the mechanism that stops their division is unknown. To help study the stopping mechanism, we defined conditions under which embryonic rat cardiac myocytes cultured in serum-free medium proliferate and exit the cell cycle on a schedule that closely resembles that seen in vivo. The culture medium contains FGF-1 and FGF-2, which stimulate cell proliferation, and thyroid hormone, which seems to be necessary for stable cell-cycle exit. Time-lapse video recording shows that the cells within a clone tend to divide a similar number of times before they stop, whereas cells in different clones divide a variable number of times before they stop. Cells cultured at 33 degrees C divide more slowly but stop dividing at around the same time as cells cultured at 37 degrees C, having undergone fewer divisions. Together, these findings suggest that an intrinsic timer helps control when cardiac myocytes withdraw from the cell cycle and that the timer does not operate by simply counting cell divisions. We provide evidence that the cyclin-dependent kinase inhibitors p18 and p27 may be part of the timer and that thyroid hormone may help developing cardiac myocytes stably withdraw from the cell cycle.  相似文献   
120.
In this study precision-cut liver slices have been used to evaluate the effects of the flavone tangeretin, the flavonoid glycoside naringin and the flavanone naringenin (the aglycone derived from naringin) on xenobiotic-induced genotoxicity. Liver slices were cultured for 24 h in medium containing [3H]thymidine and the test compounds and then processed for autoradiographic determination of unscheduled DNA synthesis (UDS). The cooked food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) markedly induced UDS in cultured human liver slices and both 2-acetylaminofluorene (2-AAF) and aflatoxin B1 (AFB1) induced UDS in cultured rat liver slices. Tangeretin (20 and 50 microM) was found to be a potent inhibitor of 5 and 50 microM PhIP-induced UDS in human liver slices, whereas 20 and 50 microM naringenin was ineffective and naringin only inhibited genotoxicity at a concentration of 1000 microM. In rat liver slices 50 microM tangeretin inhibited 10 and 50 microM 2-AAF-induced UDS, whereas 50 microM naringenin and 100 and 1000 microM naringin were ineffective. None of the three flavonoids examined inhibited 5 microM AFB1-induced UDS in rat liver slices. The inhibition of PhIP- and 2-AAF-induced UDS by tangeretin is probably attributable to the inhibition of the human and rat cytochrome P-450 isoforms which are responsible for the bioactivation of these two genotoxins. Although flavonoids can modulate xenobiotic-induced genotoxicity in human and rat liver slices, any protective effect is dependent on the particular combination of genotoxin and flavonoid examined. These results demonstrate that cultured precision-cut liver slices may be utilised as an in vitro model system to examine the modulation of xenobiotic-induced genotoxicity by flavonoids and other dietary components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号